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SUMMARY

A space–time finite element method for the incompressible Navier–Stokes equations in a bounded
domain in Rd (with d=2 or 3) is presented. The method is based on the time-discontinuous Galerkin
method with the use of simplex-type meshes together with the requirement that the space–time finite
element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi
and Babuška. The finite element discretization for the pressure consists of piecewise linear functions,
while piecewise linear functions enriched with a bubble function are used for the velocity. The stability
proof and numerical results for some two-dimensional problems are presented. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of time-dependent problems such as the incompressible Navier–Stokes equations
by finite element methods leads to the mixing of finite elements in space and finite differences
in time. In contrast, the space–time formulation performs the discretizations in space and time
concurrently by blending the space and time variables into a space–time finite element. This
space–time element has one extra dimension, and the finite element interpolation functions are
dependent on both the space and time variables. In other words, this procedure can be viewed
as an extension of the finite element method over the time domain.
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Although the concept was originally introduced by Oden [1] and Fried [2], the first
numerical results can be traced back to Bonnerot and Jamet [3,4] for the Stefan problem.
Improving on the time-continuous interpolation used in their previous formulation, Jamet [5]
later introduced another approach. His idea was to permit the unknown to be discontinuous
with respect to time. This procedure, known as the time-discontinuous Galerkin method,
allows the space–time domain to be organized into a series of ‘slabs’ Sn=�× (tn, tn+1), where
� is the underlying spatial domain and tn is a discrete time level. The fully discretized equations
are then solved on one space–time slab at a time, leading to a time-marching procedure in
which the solution for the current slab provides the initial condition for the next one.

The time-discontinuous Galerkin method has been successfully applied to numerous prob-
lems such as heat conduction [3,6], elastodynamics structural [7–9], acoustics [10–12], etc.
Unfortunately, like the standard Galerkin method, the time-discontinuous Galerkin method
has been shown to produce spurious numerical oscillations in convection-dominated problems.

To eliminate these oscillations, Varoglu and Finn [13,14] first employed the method of
characteristics to modify the spatial discretization at each time step. Johnson and Saranen [15],
and Hansbo and Szepessy [16] introduced the streamline diffusion (SD) method. These
formulations enhance stability through the addition of a small least-squares term to the test
functions. Tezduyar and Behr [17,18] presented the Galerkin least-squares space–time
(GLS/ST) method, which is obtained by adding a least-squares term to the discrete equation,
which is proportional to the equation residual. This kind of method falls into the category of
stabilization techniques.

In the case of the incompressible Navier–Stokes equations, we also have in addition to the
spurious oscillations due to the convection-dominated flows, the problem of choosing the test
spaces for the pressure and the velocity in such a way that no instability occurs. In other
words, the approximation spaces for velocity and pressure must a priori satisfy a compatibility
condition known as the inf–sup condition, also referred to in the literature as the LBB
condition by Ladyzhenskaya [19], Babuška [20] and Brezzi [21]. Hughes [22] pointed out that
the stabilized formulations can also be used with approximation spaces that do not satisfy the
LBB condition. This led to the use of stabilizing techniques based on equal order interpolation.
However, to our knowledge, there is no published work on the construction of approximation
spaces for velocity and pressure that satisfy the LBB condition in the context of the
space–time finite element methods.

The development of a stable, mixed space–time finite element is the goal of this paper. We
first present the Navier–Stokes equations and then the time-discontinuous Galerkin method,
followed by a brief review of the inf–sup condition and its extension to space–time formula-
tions. The full description of our element and the stability proof are then presented next, and
the paper concludes with some two-dimensional numerical examples.

2. GOVERNING EQUATIONS

We consider a viscous, incompressible Newtonian fluid occupying at time instant t� (0, T) a
bounded region ��Rd, with boundary �=��. The primary degrees of freedom are u(x, t),
the velocity of the fluid and the pressure p(x, t). The conservation of mass and momentum of
the fluid are expressed by the equations

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 865–884



NEW STABLE SPACE–TIME FORMULATION FOR 2D AND 3D FLOWS 867

� ·u=0 on �, �t� (0, T) (1)

and

�
��u

�t
+ (u ·�)u+ f

�
−� ·�=0 on � �t� (0, T) (2)

where � is the density of the fluid, f is a volume force and � is the Cauchy stress tensor defined
by

�= −pI+2��(u)

The strain tensor � is related to the velocity field by the relation

�(u)=
1
2

(�u+ (�u)T)

and � is the viscosity of fluid. These equations are commonly referred to as the Navier–Stokes
equations.

Along with these equations, proper boundary conditions must be imposed. Boundary
conditions for the Navier–Stokes equations are of two types. If the velocity is prescribed on
�, the condition is said to be essential

u ·ei=gi on (�D)i �t� (0, T), i=1, d (3)

If normal stress is prescribed, we speak of a natural boundary condition

n·� ·ei=hi on (�N)i �t� (0, T), i=1, d (4)

where n is an outward unit normal to the boundary � of �, {ei}i=1
d is a basis in Rd, and (�D)i

and (�N)i are complementary subsets of � in relation to the Dirichlet and Neumann condition
for each of the velocity components. The initial condition consists of a divergence-free velocity
field specified over the entire initial domain. This condition is given by

u(x, 0)=u0 on � (5)

In our case, u0=0.

3. THE TIME-DISCONTINUOUS GALERKIN METHOD

The time-discontinuous Galerkin method is a space–time finite element method for parabolic
and hyperbolic (first- or second-order) problems. This approach is based on the use of finite
element discretizations in space and time concurrently with basis functions that are continuous
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in space and discontinuous at the discrete time levels. It has been shown that this method
possesses considerable advantages not available in traditional semi-discrete approaches (finite
elements in space, finite differences in time). Indeed, the time-discontinuous Galerkin method
often leads to A-stable, higher-order implicit time stepping schemes (optimal for parabolic
problems [6,23–25] or nearly optimal for hyperbolic problems [8,26]) which are suitable for the
development of various types of adaptative procedures [8,24,27–29]. Finally, moving or free
boundaries can be handled without unnecessary technical difficulties [6,17,18,30].

3.1. Variational formulation

To define the method, we consider an ordered partition of the open time interval I= (0, T)
into subintervals In= (tn, tn+1), where tn and tn+1 belong to an ordered series of time steps
0= t0� t1� t2 · · · � tN=T. Let �n=��×In and �n=�×{tn}. We then define the space–
time slab Sn as the domain enclosed by the surfaces �n+1, �n and �n (see Figure 1). In order
to apply Dirichlet or Neumann conditions, the surface �n can be decomposed into two
complementary subsets �Dn

and �Nn
, with a decomposition for each of the velocity components

which may be different. Within each space–time element, the trial and weighting functions are
polynomials in x and t. These functions are assumed to be C0(Sn), i.e. continuous throughout
each space–time slab, but are allowed to be discontinuous across the interfaces of the slabs.
The discontinuity of the finite element functions across space–time slab interfaces provides the
possibility of changing the mesh from one slab to the next, orienting the mesh along
characteristic [13,31–37] or according to a posteriori error estimates, which increases precision
and permits larger time steps.

For each space–time slab Sn, n=0, 1, . . . , N−1, let Vn
h and Qn

h be the finite dimensional
spaces of the underlying velocity and pressure function spaces X= (H�Dn

1 (Sn))d and Q=L2(Sn).
The type of element and the choice of Vn

h and Qn
h are the subject of the next section.

The space–time variational formulation is obtained from a weighted residual of the
governing Equations (1) and (2) within a space–time slab and incorporates time-discontinuous
jump terms across slab interfaces.

Figure 1. Space–time slab.
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Within each space–time slab Sn, n=0, 1, . . . , N−1, the space–time formulation can be
written as follows: given u−

n , find uh�Vn
h and ph�Qn

h such that �vh�Vn
h, �qh�Qn

h

�
Sn

�
��uh

�t
+uh ·�uh+ f

�
·vh d� dt+

�
Sn

2��(uh): �(vh) d� dt−
�

Sn

p� ·vh d� dt

−
�

�Nn

h·vh d�+
�

Sn

qh� ·uh d� dt+
�

�n

�(u+
n −u−

n ) ·v+
n d�=0 (6)

where u�
n = lim��0 uh(tn��).

In the variational formulation given by (6), the first five terms constitute the standard
Galerkin formulation of the problem. The last one is the time-discontinuous jump term
integral on slab interfaces �n. This jump term transports the data from slab to slab via an L2

projection.

4. PRESENTATION OF THE ELEMENT

It is well known that the mixed Galerkin formulation suffers from stability problems when the
combination of the interpolations for the velocity and pressure spaces does not satisfy the
inf–sup condition (see Brezzi–Fortin [38]). The numerical consequence of not satisfying this
condition appears as oscillations in the pressure field, which are referred to as ‘spurious
pressure modes’.

Before presenting our space–time element, we discuss the inf–sup condition in the context
of the space–time finite element methods.

4.1. The inf–sup condition

To introduce the inf–sup condition, let Th be a triangulation of � so that h denotes the mesh
size parameter.

Mathematical analysis of the Stokes problem has shown that the well-posedness of the
Galerkin formulation of the steady state Stokes problem is governed by the inf–sup condition
[19–21]: there exists a constant � independent of h such that

inf
Qh

sup
Vh

�
�

qh� ·vh

�vh�V�qh�Q

���0 (7)

where Vh and Qh are finite dimensional subspaces of the underlying velocity and pressure
functions spaces, V= (H0

1(�))d and Q=L0
2(�).

From the variational formulation of the continuity equation (1), we introduce the bilinear
form b( . , . ) on X×M such that

b(v, q)=
�

Sn

q� ·v d� dt=
�

In

�
�

q� ·v d� dt
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where the divergence operator is defined only with respect to spatial variables

�
� ·u=

�u
�x

+
��

�y
�

Together with the notations used in (6) and following the inf–sup condition of the form
b( . , . ), the inf–sup condition in the context of space–time can be formulated as follows: there
exists a constant � independent of h such that

inf
Qh

sup
Vh

�
Sn

qh� ·vh

�vh�V�qh�Q

���0 (8)

where Vh and Qh are finite dimensional subspaces of the underlying velocity and pressure
function spaces, X= (H�n

1 (Sn))d and M=L0
2(Sn).

4.2. The space– time mini-tetrahedral element

When implementing the space–time formulation, the elements will become one dimension
higher to account for the time dimension. We note two classes of space–time elements:
extruded elements (comprising quadrilaterals, prisms, bricks, etc.) formed by a straightforward
extrusion of the spatial element in the time dimension, and simplex elements comprising
triangles, tetrahedra, etc. In this study, we chose the simplex-type element, which leads to the
use of completely unstructured meshes within the space–time slab and the possibility of having
a different mesh at the bottom and at the top the space–time slab, thereby avoiding
grid-to-grid interpolation when remeshing occurs.

From Arnold–Brezzi–Fortin [39], it is well known that enriching the velocity approximation
space either by adding standard or inter-edge or inter-face bubble functions often leads to
stability. This fundamental idea will also be true in the context of space–time finite elements
methods. First let’s describe the simplest stable element of this kind, which we referred to here
as the space–time mini-element.

A discretization of the space–time slab is performed by partitioning Sn into tetrahedral
elements (see Figure 3). For a given tetrahedron K, using the standard finite element notation,
we denote as space–time mini the element consisting of piecewise linear functions enriched
with a bubble function for the velocity and piecewise linear functions for the pressure. The
bubble function is piecewise linear on each Ki, i=1, 2, 3, 4, where K1, K2, K3, K4 are the four
subtetrahedra obtained by connecting the barycenter of K with its vertices (see Figure 2). In
order to define the finite element spaces of the underlying element, we set

B1(K)={b�H�n

1 (Sn), �b �Ki
�P1(Ki)�H0

1(K), K�Th (i=1, 2, 3, 4)}

and we have

Vh={�h� (C0(Sn))d��h �K� (P1(K))d �K}� (B1(K))d
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Figure 2. Mini-element.

Qh={qh� (C0(Sn))�qn �K� (P1(K)) �K}

Remark 1
In contrast, with the standard mini-three-dimensional element, this element has 10 degrees of
freedom (two per node) for the velocity instead of 15 (three per node).

Remark 2
The space–time mini-element presented above has a three-dimensional counterpart, which
consists of this extension to hyper-tetrahedra.

4.3. Stability proof for the space– time mini-element

We consider in this section the proof of the inf–sup condition for the mini-element. The most
general way to do this is to build some interpolation operator �h satisfying Fortin’s criteria
[38]. First, let us recall the Fortin’s criteria and some related results.

Proposition 1
If we can construct an operator

�h : V�Vh

u � �hu

satisfying

�
�

� ·(u−�hu)qh d�=0, �qh�Qh (9)

and
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��hu�V	c�u�V, c�0 (10)

with c independent of h and �� ��V the norm on V, then the discrete inf–sup condition holds.

In some cases, Fortin [40] suggests to build the operator in two steps, summarize in the
following proposition.

Proposition 2
Let �1�L(V, Vh) and �2�L(V, Vh) be such that

��1��V	c1���V, ���V (11)

��2(I−�1)��V	c2���V, ���V (12)

�
�

� ·(�−�2�)qh d�=0, ���V, �qh�Qh (13)

where constants c1 and c2 are independent of h. If we set

�hu=�1u+�2(u−�1u) (14)

then the inf–sup condition holds.

In the case of continuous pressure, �1 will be the interpolation operator of Clément [41] which
satisfies for ��H1(�)

�
K

hK
2m−2��−�1� �m,K

2 	c���1,�
2 , m=0, 1 (15)

The interpolation operator of Clément which is also referred to a local regularization operator
of Clément, is a continuous interpolate using average values of � instead of pointwise values.
It is constructed via a local projection. Such operators were originally introduced for triangular
meshes by Clément in [41], extended to quadrilateral meshes by Fortin [40] and generalized by
Bernardi [42] to treat (isoparametric) d-simplices (triangles, tetrahedral, hypertetrahedral). We
also refer to the recent work of Bernardi–Girault [43] for the state of the art in the
construction of such operators.

The operator �2 on the other hand is constructed on each element K, in order to satisfy (13)
and in many cases, with the additional requirement that

��2��1,K	c(hK
−1���0,K+ �� �1,K) (16)

We can summarize these results in the following proposition.
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Proposition 3
Let Vh be such that a ‘Clément’s operator’: �1: V�Vh exists and satisfies (15). If we can
construct an operator: �2: V�Vh such that (13) and (16) hold, then the operator �h defined
by (14) satisfies (9) and (10) and, therefore, the discrete inf–sup condition holds.

After these preparations, we are ready for the main result of this paper, which is summarized
in the following proposition.

Proposition 4
The space–time mini-element satisfies the ‘inf–sup’ condition.

The standard proof of the stability of mini-element (cf. Brezzi–Fortin [38]) applies quite
directly, with minor changes due to the space–time nature of the element.

Proof
Let �1 be the operator of Clement. We refer to the work of Bernardi [42] for the existence and
approximation result (15) in the case of tetrahedral and hypertetrahedral meshes. We have
now to construct �2. Since in each element we have vh� (P1(K))d� (B1(K))d, we build
�2: V� (B1(K))d and define it, on each K, as the solution of

�
�
�
�
�

�2v�K� (B1(K))d�
K

(�2v−v) d� dt=0
(17)

It is clear that (17) has a unique solution and since, �2v�K� (B1(K))d, which from a scaling
argument (see Dupont–Scott [44]) yields the following inverse inequality:

��2v�1,K	chK
−1�v�0,K, �v�V

where hK is now a space–time mesh parameter, from which the temporal approximation enters
implicitly into the stability proof. From the inverse inequality, (16) holds.

To check condition (13), we recall that the pressure is continuous ((Qh�C0(Sn))) hence we
have

�
Sn

� ·(�2v−v)qh d� dt=
�

In

��
�

� ·(�2v−v)qh d�
�

dt= −
�

In

�
�

(�2v−v) ·�qh d� dt

where the gradient and the divergence are defined only with respect to the spatial variables. By
Fubini’s theorem, the last integral is well defined with the requirement that v�L1(tn, tn+1;
(H1(�))d). Together with this weak regularity condition, we have
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D. N’DRI, A. GARON AND A. FORTIN874

�
In

�
�

(�2v−v) ·�qh d� dt=
�

Sn

(�2v−v) ·�qh d� dt

Since we used a piecewise linear pressure field, the following is obtained:

�
Sn

(�2v−v) ·�qh d� dt=�
K

�
K

(�2v−v) ·�qh d� dt=0

so that condition (13) is satisfied and the inf–sup condition holds. This proof is valid for
two-dimensional and three-dimensional+ time mini-elements.

Remark 3
Since the gradient operator is only defined with respect to the spatial variables, it is necessary
for the approximation to be linear in space. But the only crucial requirement is that the
�qh� (P0(K))d (constant by space–time element) which is not the case for extruded bi- or
tri-linear elements.

5. NUMERICAL EXAMPLES

In this section, we present numerical examples in order to verify the stability of the
mini-element and the effectiveness of the proposed formulation.

We have considered the computation of a Poiseuille flow, a no-flow test, a flow behind a
circular cylinder, and Stokes’s second problem. The first two tests are simple flow problems
which admit steady-state solutions, but which are instructive in the context of incompressible
flow problems [45]. The third leads to a transient solution and the development of a Von
Karmann vortex street behind a circular cylinder. The last one involved the simulation of the
flow over a moving domain.

5.1. Numerical methodology

Together with the complete definition of the interpolation spaces, the formulation (6) is solved
sequentially for all space–time slabs, starting with the initial condition u−

0 =0. For each
space–time Sn, n=0, 1, . . . , N−1, the computation of (6) results in a global non-linear
system of algebraic equations which is solved iteratively using a quasi-Newton method, with
numerical evaluation of the Jacobian matrices. The linearized systems are solved using a direct
solver (LU decomposition). Meanwhile, it is worth mentioning that the bubble function is
eliminated from the global system via static condensation in order to make the formulation
competitive on a computational point of view.

Since remeshing is not an issue here, we consider the same spatial mesh for the top and the
bottom of the space–time slab, so that the burden of the construction of the space–time mesh
is restricted to the spatial mesh. This mesh is obtained by a straightforward extrusion of the
spatial mesh formed by triangular elements. Then, the resulting six-node prism mesh is divided
into tetrahedra (see Figure 3).
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Figure 3. Discretization of the space–time slab.

5.2. The Poiseuille flow

A parabolic velocity profile is imposed at both the inlet and outlet of a rectangular channel
and a no-slip condition is imposed on the parallel walls. A parabolic velocity profile and a
linear pressure are the analytic solutions to the problem.

The mesh for this computation is illustrated in Figure 4. In order to show the numerical
effect of not satisfying the inf–sup condition, we compare three elements: the tetrahedron
P1−P0 element (linear velocity, piecewise constant pressure), the (prism) Q1−P0 element and
the mini-space–time element.

Several methods have been proposed to arrive at an intuitive evaluation of the inf–sup
condition. One of these is the constraint ratio. The computation of this ratio for our three
elements with the given mesh (see Figure 4) leads us to reject the tetrahedron P1−P0 element
due to the fact that its ratio is greater than 1, which would lead to a locking phenomenon.

In our first attempt, we used the (prism) Q1−P0 element. As we can see in Plates 1 and 2,
the pressure field is subject to oscillations even though the velocity field is satisfactory. Next,
we used the space–time mini-element, for which the results are satisfactory with a stable
pressure field (see Plates 3 and 4).

Figure 4. Mesh.
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5.3. The no-flow test

The no-flow test was first considered by Gresho [46]. On the boundary of the computational
domain, the x-component and the y-component of the velocity were specified to be zero. A
non-zero external force f= (0, g) was imposed. The analytical solution is u=0 and the
pressure solution is linear.

Plates 5–7 show that, using a coarse mesh the space–time mini-element passes the no-flow
test, yielding the solution for both velocity and pressure. This result was expected due to the
fact that this element is linear for both velocity and pressure.

5.4. Simulation of the Von Karmann �ortex street behind a circular cylinder

The simulation of the Von Karman vortex street behind a circular cylinder has long been used
as a benchmark problem to test the performance of numerical algorithms for solving the
Navier–Stokes equations. We present numerical results for the flow behind a cylinder at a
Reynolds number of 100.

Figure 5 illustrates the computational domain and boundary conditions. A free natural
boundary conditions is weakly enforced at the outflow section. The Reynolds number is
defined by Re=DU/�, where D is the diameter of the cylinder, U is the free-stream velocity
and � is the kinematic viscosity. Since both the diameter of the cylinder and the free-stream
velocity were set to unity, the kinematic viscosity was set to 0.01 to achieve a Reynolds number
of 100. A complete description of this problem can be found in Engelman and Jaminia [47].

The mesh used for this simulation was built using previous knowledge about the formation
of the vortex street behind the cylinder: it is more refined in that area and the refinement is
good enough to capture the unsteady structures of the flow at the Reynolds number of 100.
The computation is started with a null initial condition with a fixed time step �t set to 0.1.

Figure 6 is the time history of the y-component of the velocity reported at the location
(x=4, y=0) and shows the periodic behavior of the vertical velocity component. The
frequency of the oscillations is in accordance with the benchmark solution [47]. The next
results presented in Plates 8–13 are contour plots over the full domain of various quantities at

Figure 5. Computational domain and boundary conditions.
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Figure 6. Time history of the y-velocity.

Figure 7. x-Component of the velocity at x=4.
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Figure 8. y-Component of the velocity at x=4.

Figure 9. Pressure at x=4.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 865–884



Plate 1. Velocity field (Q1−P0) element. Plate 2. Pressure field, (Q1−P0) element.

Plate 3. Velocity field, mini-element. Plate 4. Pressure field, mini-element.

Plate 5. x-Component of velocity. Plate 6. y-Component of velocity.

Plate 7. Pressure.
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Plate 8. x-Component of the velocity. Plate 9. y-Component of the velocity.

Plate 10. Velocity field. Plate 11. Streamline.

Plate 12. Vorticity. Plate 13. Pressure.
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Figure 10. Vorticity at x=4.

Figure 11. Oscillating plate.

a particular instant. In agreement with [47], this time tref was chosen to be the instant when
the y-component of the velocity was changing from a negative to a positive value at the
point (x=4, y=0). The solution at this time was interpolated using linear interpolation
between the two bracketing time step solutions. Finally, Figures 7–10 are the values of
various quantities at tref. All these results are in good agreement with the benchmark
solution [47] and with other published solutions (see [48–51]) and show the vortex-shedding
as expected.
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Figure 12. Computational domain and boundary conditions.

Figure 13. First cycle.
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5.5. Stokes’s second problem

We now consider the flow of an incompressible fluid over the two-dimensional plate subject
to a planar oscillatory movement along the x-axis (see Figure 11). A harmonic damped
oscillating velocity profile and a null pressure gradient solution of the analytic problem
exists. The test case involved a simulation flow over a moving domain. The displacement of
the plate is handled by a deformation of the grid and the domain in the temporal co-
ordinate, which in this case is a uniform translation of the grid in the x-direction.

Figure 12 illustrates the computational domain and the boundary conditions. The
Reynolds number is defined by Re=U
L/�, L is the longitudinal displacement of the
plate, U
 is maximum amplitude of the plate velocity, and (�=2�) is the oscillation
frequency. Since, U
=1 and L=1/�, � is set to 1/10� in order to achieve a Reynolds
numbers of 10. A complete description of this problem can be found in [52].

The mesh used for this simulation was refined near the bottom wall to capture the main
features of the flow. The results presented here were obtained after three cycles (300 times
steps with a fixed time step set to 0.01). In order to compare the computed and the
analytical solutions, we report the x-component velocity profile at each quarter-cycle. Fig-
ures 13 and 14 are the comparaison of the solutions during the first and the second cycle
respectively (the third cycle is identical to the second). The agreement with the analytical
solution is very good except for the first quarter of the first cycle where the computed
solution is not in phase since to start the computation a null initial condition was used.

Figure 14. Second cycle.
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26. CONCLUSIONS

A stable, mixed space–time formulation has been presented for the Navier–Stokes equa-
tions. The method is based on the time-discontinuous Galerkin formulation with the space–
time mini-element. The velocity is linear, enriched with a piecewise linear bubble function,
while the pressure is linear. The numerical results presented above confirm that the element
is stable with respect to the inf–sup condition and that our procedure is capable of solving
transient flows.
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